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ABSTRACT
Driving in rainy weather is considered as one of most hazard-
ous conditions for driving. There is a need for appropriate
countermeasures focusing on the reduction of these crashes,
but measuring the key factors under such conditions is very
challenging. With a humid subtropical climate, the annual pre-
cipitation in Louisiana is about 64 inches, twice above the
national average. Approximately 11% of total crashes in
Louisiana happen during rainy weather, and nearly 25% of
total fatal crashes happen in rainy weather annually. This
study applied association rules mining to discover crash pat-
terns during rainy weather with Louisiana crash data
(2004–2011). The findings showed that “single-vehicle run-off
road crash” is predominant during rainy weather and is associ-
ated with grade-curve aligned roadways, curved roadways,
and roadways with no streetlights at night. In rainy condition,
no injury and sideswipe crashes are also significant in num-
bers. Moderate injuries are dominant in single-vehicle crashes.
Roadways with poor illumination are associated with straight,
level aligned roadways in rainy weather crashes. Drivers (age
15 – 44) are vulnerable in run-off crashes when the roadways
had poor illumination and curves during rainy condition. The
findings of this study will be beneficial for safety practitioners.

KEYWORDS
road safety; data mining;
association rules; market
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1. Introduction

Rainy weather is considered as one of the most hazardous conditions for
driving. Drivers tend to adapt their driving behavior to adjust the condi-
tions presented by inclement weather. Depending on the surroundings,
drivers drive more vigilantly by keeping longer headways, reducing operat-
ing speeds, or being more cautious (Das, Brimley, Lindheimer, and Pant,
2016). Due to the visual obstruction from rainfall and loss of surface fric-
tion, most vehicles slow down during rainfall, but crashes still occur, which
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may be associated with various contributing factors. Measuring the added
risk and identifying key crash contributing factors during rainy weather has
been challenging. The total reported number of traffic crashes in rainy wea-
ther in Louisiana is 11,398 in 2011 and 10,204 in 2010. Approximately,
11% of yearly total crashes in Louisiana happened during rainfall, and
nearly 25% of total fatal crashes in Louisiana happened in rainy weather in
the state. To reach “Destination Zero Deaths” set by Louisiana Highway
Safety Strategies, it is critical to reduce the number of crashes and crash
severity under the rainy condition (Louisiana Highway Safety
Commission, 2017).
There are several ways to identify crash risk factors. The parametric

models work well if the assumptions and model format are accurate to
reflect the underlying relationships between dependent and independent
variables. Violation of any assumption could lead to flawed or at least inad-
equate estimations. Nonparametric statistical methods like data mining
techniques have been receiving increased attention from researchers in traf-
fic safety because of no-predefined assumptions. Additionally, factor identi-
fication task involves categorical data analysis. Crash frequency analysis
and crash severity analysis are two major transportation safety research
areas, which have been extensively studied. Lord and Mannering (2010)
conducted a comprehensive review of state-of-the-art crash frequency stud-
ies and their limitations. Savolainen, Mannering, Lord, and Quddus (2011)
conducted a similar study on crash-injury severities. Mannering and Bhat
(2014) summarized analytic methods used in these two transportation
research areas and provided future directions. Interested readers can con-
sult these studies to understand the breadth and depth of traffic
safety analysis.
This method is concerned with the identification of interesting patterns

from a massive data set. This research aims to understand the ramifications
of rainy condition on safety from a perspective of roadway environment
and driver characteristics. Due to the nature of the data and associated
research objectives, association rules mining is a good fit for the analysis.

2. Literature review

It is known that inclement weather plays a key role in crash occurrence
due to reduction of friction and low visibility. In past, there are limited
number of studies that incorporated inclement weather in traffic safety ana-
lysis. During the last few years, there has been a surge of studies that
incorporate inclement weather in the safety analysis. Rainfall is considered
as one of the most significant inclement weather events. The current litera-
ture review focuses on the traffic safety studies related to rainy weather. In
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a study conducted in 1971, Campbell (1971) examined the extent of the
wet pavement crash scenarios in the U.S. Haghighi-Taleb (1973) investi-
gated the association between rainfall and crashes in two cities
(Huddersfield and London). The findings showed that moderate and heavy
rainfall have similar effects on crash rates. Satterthwaite (1976) assessed the
seasonal and weather effects on crash frequencies in California. The find-
ings of this study showed that weather is one of the major contributing fac-
tors affecting crash frequencies. Sherretz and Farhar (1978) used rainfall
data and crash reports for seven southern Illinois cities to determine the
relationship between rainfall and traffic crashes. This study determined a
statistically significant linear trend between mean number of crashes and
amount of rainfall. Brodsky and Hakkert (1988) examined the added risk
of a crash during rainy weather. They used data from two sources: the traf-
fic injury (fatal and nonfatal) crash file in Israel (1979–1981), and 1983 to
1984 fatal crash data in the U.S. using Fatality Analysis Reporting System
(FARS). An empirical study was conducted in providing the evidence of
crash risk during and following rain events on Calgary and Edmonton,
Canada (Andrey & Yagar, 1993). The findings showed that the overall
crash risk during rainfall conditions was found to be 70% higher than nor-
mal. Eisenberg (2004) investigated the association between precipitation
and traffic crashes in the U.S. during 1975–2000. The results showed that
1 cm of precipitation increases the fatal crash rate by 3% if exactly 2 days
have passed since the last precipitation and by about 9% if more than
20 days have passed. Keay and Simmonds (2006) examined the impact of
rainfall on daily crashes in the metropolitan area of Melbourne, Australi,a
during 1987 to 2002. The findings showed that rainfall occurring after a
dry spell has an enhanced effect on the volume-normalized crash counts as
the spell duration increases. Jung, Qin, and Noyce (2010) examined the
effects of rainfall on the severity of single-vehicle crashes on Wisconsin
interstate highways utilizing polychotomous response models. The results
revealed that rainfall intensity, wind speed, roadway terrain, driver’s gender,
and safety belt were statistically significant. Mills, Andrey, and Hambly
(2011) conducted a study to examine the rainfall related collision risk by
using police records and comprehensive insurance claim data for
Winnipeg, Canada, over the period 1999 to 2001. Both data sets showed
similar results—precipitation increases the risk of injury collision and risk
of injury relative to corresponding dry weather control periods. The results
of the study conducted by Sun, Hu, Habib, and Magri (2011) indicated a
higher crash risk and a higher injury risk during rain. The risk potentials
vary depending upon the type of highway, location of the highway, time of
day, crash severity, and crash characteristics. Xu, Wang, and Liu (2013)
developed separate crash risk prediction models for different weather
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conditions using crash data, weather data, and traffic data on the I-880N
freeway in California. The findings showed that the traffic flow characteris-
tics contributing to crash risk were different across different weather condi-
tions. The speed difference between upstream and downstream stations was
also found to be significant. Ahmed, Abdel-Aty, Lee, and Yu (2014) exam-
ined the viability of using airport weather information in real-time road
crash risk assessment in locations with inclement weather and recurrent
fog problems. Jaroszweski and McNamara (2014) used city-wide weather
radar approach to rainfall quantification and matched-pairs analysis to
examine the influence of rainfall on crashes in the U.K. cities of
Manchester and Greater London during 2008 to 2011. Theofilatos and
Yannis (2014) provided a systematic review of the effect of traffic and wea-
ther characteristics on roadway safety. Black, Villarini, and Mote (2017)
used daily precipitation data and crash data from six U.S. states (Arkansas,
Georgia, Illinois, Maryland, Minnesota, Ohio) for the period 1996 to 2010.
A matched pair analysis showed that there is a statistically significant
increase in crash and injury rates during rainfall days. Jackson and Sharif
(2016) used fatal crash data and geospatial data to examine the temporal
and spatial distribution of rainfall related crashes in Texas from 1982 to
2011. Results indicate that rain is a significant contributor in few counties
but at less than 95% confidence in some of the wetter counties. The study
conducted by Das, Brimley, Lindheimer, and Zupancich (2017) shows that
the likelihood of a crash increase during periods of rainfall, despite the ten-
dency for less traffic and for lower speeds to prevail during these times.
Ghasemzadeh and Ahmed (2017) used SHRP-2 Naturalistic Driving Study
(NDS) data to identify patterns in driver behavior and performance in
rainy weather conditions. In a follow-up study, the impact of heavy rain on
speeding and headway behavior was examined (Ahmed & Ghasemzadeh,
2018). Wu, Abdel-Aty, and Lee (2018) conducted another visibility and
inclement weather-related study using data from two regions in Florida.
Lee, Chae, Yoon, and Yang (2018) used the rainfall and traffic crash data
(during 2007–2015) for Seoul by using structural equation modeling. The
findings show that compact cars, young drivers, female drivers, heavy rain,
deep water, and roads with a long drainage length have high likelihood
with an increase in the level of crash severity. Omranian, Sharif, Dessouky,
and Weissmann (2018) used crash-based matched-pairs analysis approach
to examine the impact of rainfalls on the crash risk on Texas roadways.
The overall findings show that rainfall increases crash risk by about 57%
in Texas.
The essential method behind transportation safety analysis is to identify

the relationship between a large variety of variables and crash occurrence
or crash severity. To achieve this goal, a variety of methods have been
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applied and accepted by transportation researchers. Those methods include
logistic regression(Al-Ghamdi, 2002; Dissanayake & Lu, 2002), decision
trees (Chung, 2013; Figueira, Pitombo, de Oliveira, & Larocca 2017; Khan,
Bill, & Noyce, 2015; Saha, Alluri, & Gan, 2015), support vector machines
(Li, Lord, Zhang, & Xie, 2008; Chen, Zhang, Qian, Tarefder, & Tian, 2016),
text mining (Brooks, 2008; Brown, 2016), multiple correspondence analysis
(Das & Sun, 2017; Das, Brimley, Lindheimer & Pant, 2016; Das, Avelar,
Dixon, & Sun, 2018; Jalayer, Pou-Rouholamin, & Zhou, 2018), association
rules mining (Geurts, Thomas, & Wets, 2005; Marukatat, 2007; He et al.,
2008; Pande, & Abdel-Aty, 2009; Kumar, & Toshniwal, 2016; Weng, Zhu,
Yan, & Liu, 2016; Ait-Mlouk, Gharnati, & Agouti, 2017; Nitsche, Thomas,
Stuetz, & Welsh, 2017; Das, Dutta, Jalayer, Bibeka, & Wu, 2018; Das,
Dutta, Avelar, Dixon, Sun, & Jalayer, 2018), association rules negative bino-
mial miner (Das, Minjares-Kyle, Avelar, Dixon, & Bommanayakanahalli,
2017), and deep learning (Gibert, Patel, & Chellappa, 2017; Das, Dutta,
Dixon, Minjares-Kyle, & Gillette, 2018).
In the recent years, many studies examined association rules mining in

traffic crash analysis. Geurts, Thomas, and Wets (2005) used association
rules mining to obtain a descriptive analysis of “black” zones. In this study
frequent item sets are generated to identify crash circumstances that fre-
quently occur together to find out which factors explain the occurrence of
the crashes in “black” zones. In his study, Marukatat (2007) applied associ-
ation rules to real traffic-crash data collected from local police stations.
This study found out candidate rules offered significant insights into the
phenomena of safety improvement. He et al. (2008) conducted multidimen-
sional association rules model for the freeways of China. This study also
presented preventive measures in reducing crashes. Pande and Abdel-Aty
(2009) used association rules mining in safety analysis by generating closely
associated rules. Kumar and Toshniwal (2016) used association rules min-
ing to characterize crash locations. Weng, Zhu, Yan, and Liu (2016) used
rules mining approach to identify word zone-related crash patterns. Ait-
Mlouk, Gharnati, and Agouti (2017) used this technique to generate
insights and sufficient knowledge to enable decision makers to make the
right decision to avoid dangerous routes and improve road safety. Nitsche,
Thomas, Stuetz, and Welsh (2017) used 1056 junction crashes in the U.K.
to determine robust precrash scenario patterns by using association rule
mining. Das, Minjares-Kyle, Avelar, Dixon, and Bommanayakanahalli
(2017) used the second Strategic Highway Research Program’s (SHRP-2)
Roadway Inventory Database (RID) crash data for Florida rural roadways
to investigate improper passing related crashes by using association rules
negative binomial (NB) miner. Das, Dutta, Jalayer, Bibeka, and Wu (2018)
applied association rules ‘Eclat’ algorithm to determine the significant rules
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from wrong way crashes in Louisiana. Das et al. (2018) applied supervised
association rules to determine key patterns in pedestrian crashes.
Many recent studies applied data fusion techniques in developing a data

set that can examine the association between crash and rainfall. However,
the success of the data fusion depends on rigorous quality check. The gen-
eralized findings from these studies fluctuate due to the deviation from the
scenario specific assumptions. This study places emphasis on examining the
effect of rainfall on the crash occurrence based on the crash database of
Louisiana. The study is limited to rainfall-related patterns with crash out-
comes, rather than the effect of wet pavement, visibility, and the reduction
of friction. Unlike earlier studies, this project is able to identify the patterns
of contributing factors during the crash occurrences in the rainy environ-
ment. The current study is unique in the methodological aspect as none of
the prior studies have applied association rules mining in determining sig-
nificant patterns in rainfall related crashes.

3. Methodology

3.1. Association rules mining

Data mining is the process of identifying valid and understandable patterns
in the data set. It helps in extracting and refining valuable knowledge from
large data sets. Data mining involves machine learning, statistical know-
ledge, modeling concepts, and database management. It is important to
note that data mining is concerned only with relationships among variable
categories. The methods can be classified into two main sections: descrip-
tive and predictive. Association rules mining, a descriptive analytics, discov-
ers significant rules showing variable category conditions that occur
frequently together in a data set.
Many algorithms can be used to discover association rules from data to

extract useful patterns. Apriori algorithm is one of the most widely used
and famous techniques for finding association rules (Agrawal, Imielinski, &
Swami, 1993). Due to the explorative and eloquent nature, intelligible rep-
resentation and visualization of the found patterns and models are essential
for the successful mining process to make the results easy to understand.
One important feature of the technique is that no variables are assigned as
dependent or independent. The apriori algorithm for searching association
rules is easy to interpret, and the computations used are straightforward.
A frequent itemset generation algorithm digs out frequently occurring

itemsets, subsequences, or arrangements from large data sets. Frequent
itemsets mining has been applied in many branches of science, for example,
social science, web mining, and bioinformatics. A set of definitions are
given here before demonstrating the method with an example. Let I ¼ {i1,
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i2, … im} be a set of items (e.g., a set of crash categories for a particular
crash record) and C ¼ {c1, c2, … , cn} be a set of database crash informa-
tion (transaction) where each crash record ci contains a subset of items
chosen from I. A set of items is referred to as an itemset. An itemset that
contains k items is considered as a k-itemset.
An association rule can be expressed as X ! Y, where X and Y are dis-

joint itemsets. Here, X is known as the antecedent and Y is the consequent.
The strength of the association rule can be measured in terms of the values
of support, confidence, and lift. The equations of support are listed in
Eq. 1–Eq. 3 (Dutta, 2016).

S Xð Þ ¼ r Xð Þ
N

(1)

S Yð Þ ¼ r Yð Þ
N

(2)

S X ! Yð Þ ¼ r X \ Yð Þ
N

(3)

Where,

rðXÞ ¼ Number of incidents with X antecedent
rðYÞ ¼ Number of incidents with Y consequent
rðX \ YÞ ¼ Number of incidents with both X antecedent and Y consequent
N¼Total number of incidents
S(X)¼ Support of antecedent
S(Y)¼ Support of consequent
S(X ! Y) ¼ Support of the association rule (X ! Y)

The equations of confidence and lift are listed in Eq. 4 and 5. Confidence
measures the reliability of the inference of a generated rule. A higher confi-
dence for a X ! Y indicates that presence of Y is highly visible in the
transactions having X. The lift of the rule makes an association with the
frequency of co-occurrence of the antecedent and the consequent to the
expected frequency of co-occurrence.

C X ! Yð Þ ¼ S X ! Yð Þ
S Xð Þ (4)

L X ! Yð Þ ¼ S X ! Yð Þ
S Xð Þ:S Yð Þ (5)

Where,

C(X ! Y)¼ Confidence of the association rule (X ! Y)
L(X ! Y)¼ Lift of the association rule (X ! Y)
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The more the lift value exceeds from 1, the stronger the dependency
becomes. It is desirable for rules to have a large confidence factor, high
level of support, and a lift value greater than 1. Because some events of
interest in traffic safety analysis are very rare (e.g., fatal crashes), the sup-
port for some rules of interest could be quite low. It essentially means that
lift value is more important for determining strength of an association rule
than the other two criteria. Hence, in the present application the rules
should be evaluated based on the “lift” values. The rules “discovered” by
the algorithm still need to have support greater than a minimum threshold.

3.2. Exploratory data analysis

To identify important contributing factors for rainy weather crashes
(crashes that are defined as rainy in the weather variable) in Louisiana, a
large data set containing eight years of crash records (2004–2011) was
obtained from the Louisiana Department of Transportation and
Development (LADOTD). The data was stored as an unsorted and unman-
ageable format in Microsoft Access database tables. Every crash record has
many variables, and the detailed information is stored in separate data
tables such as crash, driver, and vehicle. Cross-table in-depth analysis
would be useful to find out hidden crash patterns, and association rules
mining provides promise in exploring these patterns. The data preparation
task involved the following steps:

� Combine eight years of crash data from LADOTD police
reported crashes.

� Merge driver and roadway condition data with the crash data by match-
ing with the crash identification number.

� Prepare the rainy weather crash database by filtering rainy weather in
the weather condition variable.

Traffic crash databases contain many variables that can make the out-
comes of the rules uninterpretable. The crash records with missing and
questionable information were removed. For example, 300 crashes have
driver age listed as 200, which were removed. The final database contains
58,288 rainy weather–related crash records occurred on all types of road-
way functional classes (interstate to local roadway). The general distribution
of the important variables is listed in Table 1. It is important to note crash
record includes information on all vehicles and drivers as well as occu-
pants. This study only considers at-fault (driver responsible for a crash
occurrence) driver information for the final analysis.
To focus on the meaningful analysis, a set of key variables are selected

such as the information on crash timing (day of the week), roadway
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characteristics (alignment, lighting), human factor (driver gender and age),
and crash characteristics (crash severity and collision type). The variable
selection procedure primarily considered findings from the past studies. A
variable is taken out from further consideration if one of its attributes
exceeds over 70% (determined by examining number of rules by using
larger number of variables) in frequency. If these variables are not taken
out from analysis, redundant rules with high lift values will be generated.
For example, pavement type is not considered for the next level of variable
selection as one of its attributes (asphalt) exceeds 70% in frequency distri-
bution. Additionally, this study is focused on rainfall-related patterns with
crash outcomes, rather than the effect of wet pavement, visibility, and fric-
tion reduction. Thus, the removal of these variables from analysis would
not affect the research goals.
Random forest algorithm was later applied to determine the significant

factors from the primary list of variables. As the primary concern of this
study is to identify patterns from rainy weather crashes, variable selection
methodology is not described in this study. For the association rules, there
are various settings required to be altered for significant findings. The min-
imum support and confidence are essential to generate the important rules.
After a significant number of trials and errors, the minimum support for
the rules was considered as 1% with the minimum confidence of 60%.
One percent of minimum support means that no item or set of items will

Table 1. Distribution of rainy weather crashes by key variables.
Categories Frequency Percentage Categories Frequency Percentage

Alignment Collision Type
Straight-level 39,546 67.85 Rear end 11,350 19.47
Curve-level 11,835 20.30 Right angle 5,096 8.74
Straight-level-elevated 750 1.29 Sideswipe- same direction 1,962 3.37
On grade-straight 1,999 3.43 Single vehicle 32,357 55.51
On grade_curve 2,231 3.83 Left turn- opposite direction 1,316 2.26
Curve-level-elevated 783 1.34 Left turn- angle 1,869 3.21
Hillcrest-straight 801 1.37 Left turn- same direction 755 1.30
Hillcrest-curve 230 0.39 Head-on 1,108 1.90
Dip, hump-straight 94 0.16 Right turn- opposite direction 127 0.22
Dip, hump-curve 19 0.03 Right turn- same direction 382 0.66

Lighting Sideswipe- opposite direction 1,966 3.37
Daylight 34,660 59.46 Day of week
Dark- continuous street light 1,473 2.53 Weekend 26,141 44.85
Dark- no street light 19,170 32.89 Weekday 32,147 55.15
Dark- street light at

intersection Only
974 1.67 Gender

Dusk 957 1.64 Male 37,542 64.41
Dawn 1,054 1.81 Female 20,746 35.59

Driver Age Severity
15–24 18,977 32.56 No Injury 32,613 55.95
25–34 13,107 22.49 Complaint 18,983 32.57
35–44 9,501 16.30 Moderate 5,913 10.14
45–54 8,121 13.93 Severe 345 0.59
55–64 4,780 8.20 Fatal 434 0.74
64–75 2,289 3.93
75 plus 1,513 2.60
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be considered frequent for the first analysis if it does not appear in at least
583 traffic crashes (1% of total 58,288 crash records). It may be rather
argued that the choices for the values of these parameters are subjective,
which is partly true. However, a trial-and-error experiment indicates that
setting minimum support too low will result in exponential growth of the
number of items in the frequent item sets. In contrast, by choosing a sup-
port parameter too high, the algorithm will be capable of generating a small
number of rules. The minimum confidence value of 60% indicates that a
rule is considered reliable when the consequent of the rule occurs at least
six out of ten times that the antecedent appears. By choosing different con-
fidence values, a trial-and-error experiment showed that this parameter
value gives rather stable results concerning the amount of rules generated
by the algorithm. The purpose of postprocessing the association rules set is
to identify the subset of interesting rules in a generated set of note-
worthy rules.

4. Results and discussion

The association rules were generated in this study by using ‘arules’ package
in software R (Hahsler, Buchta, Gruen, & Hornik, 2018). The final analysis
demonstrates that the data set has 58,288 rows with 43 items/attributes and
a density of 0.163. The frequency of the items is shown in Figure 2. The
top five frequent items in the dataset are alignment¼ straight-level, driver
gender¼male, lighting¼ daylight, severity¼ no injury, and collision
type¼ single vehicle. The frequency of the rules generated for different
itemsets, and the statistics of support, confidence, and lift are displayed in
Figure 1 and Table 2, respectively. Rules are created for two phases. When

Figure 1. Item frequency plot.
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the minimum threshold of the lift is selected as one, the total counts of the
rules are lowered. For 1-itemset value, only two rules are produced; for
7-itemsets value, total counts of the rules are 6. The maximum number of
rules is generated for 4-itemsets. In most cases, it is very difficult to inter-
pret itemsets with higher numbers. In this study, the result analysis was
limited to 4-itemsets for easier interpretation.
The first 50 rules of 2-itemsets are listed in Table 3. From the first four

rules, it is seen that rainy weather crashes involving either curve-aligned
roadways or dark with no street lights are mostly single-vehicle run-off-
road (ROR) crashes. The National Highway Traffic Safety Administration
(NHTSA) study also showed that (Liu and Subramanian, 2009) ROR
crashes are more likely to occur during inclement weather condition.
When looking at the interpretation of the association rules, the top 13 rules
listed in Table 5 express that the top rules with higher lift mostly relate to
collision type and temporal characteristics (e.g., daylight). The variable cat-
egory single-vehicle crash is found as “consequent” for top four rules. It
may indicate that crashes in rainy weather are associated with run-off
crashes due to the visual obstruction. The second rule {Lighting¼Dark -
No Street Lights} ¼> {Collision Type¼ Single Vehicle} is associated with

Table 2. Summary chart of the association rules mining.

Supportmin ¼ 1%, Cofidencemin ¼ 60%

Lift � 1

Support Confidence Lift

Minlen Maxlen Rules (all) Rules (Lift � 1) Min. Mean Max. Min. Mean Max. Min. Mean Max.

1 1 2 2 0.644 0.661 0.678 0.644 0.661 0.678 1.000 1.000 1.000
2 2 81 59 0.010 0.109 0.412 0.600 0.715 0.849 1.002 1.147 1.482
3 3 423 330 0.010 0.054 0.257 0.601 0.722 0.922 1.001 1.176 1.660
4 4 871 692 0.010 0.033 0.152 0.600 0.721 0.939 1.000 1.190 1.691
5 5 767 622 0.010 0.022 0.092 0.601 0.723 0.939 1.001 1.207 1.693
6 6 217 179 0.010 0.015 0.036 0.600 0.720 0.928 1.000 1.217 1.934
7 7 6 6 0.011 0.011 0.012 0.631 0.740 0.843 1.072 1.249 1.471
All All 2,367 1,890 0.010 0.034 0.678 0.600 0.722 0.939 1.000 1.194 1.934

Figure 2. Scatter plot of the generated rules (a) 2-itemsets, (b) 3-itemsets, (c) 4-itemsets. (a) 2-
itemsets; (b) 3-itemsets; (c) 4-itemsets.
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15,621 crashes. The consequent of this rule verifies that single-vehicle
crashes under rainy weather are closely associated with roadway segments
without light at night. Another study showed that crashes happening in sig-
nalized intersections with bad weather and dark street lighting had a sig-
nificantly higher probability of severe injury (Abdel-Aty, 2003). Rules 14 to
19 in Table 5 indicate the relationship between collision type and straight-
level crashes. Nearly 68% of the rainy weather crashes happened in
straight-level roadways. As the variable alignment is skewed to a particular
category (straight-level), more rules are associated with this category. The

Table 3. First fifty rules for 2-itemsets.
No. Antecedent Consequent Supp. Cofid. Lift Count

1 Alignment¼On Grade-Curve > Collision_Type¼ Single Vehicle 0.031 0.823 1.482 1807
2 Lighting¼Dark - No Street Lights > Collision_Type¼ Single Vehicle 0.268 0.816 1.47 15621
3 Alignment¼ Curve-Level-Elevated > Collision_Type¼ Single Vehicle 0.011 0.803 1.447 641
4 Alignment¼ Curve-Level > Collision_Type¼ Single Vehicle 0.162 0.799 1.439 9443
5 Collision_Type¼ Rear End > Lighting¼Daylight 0.16 0.822 1.383 9326
6 Driver_Age ¼ 75 plus > Lighting¼Daylight 0.021 0.811 1.364 1224
7 Collision_Type¼ Left Turn - Same Direction > Lighting¼Daylight 0.01 0.803 1.35 583
8 Collision_Type¼ Sideswipe - Same Direction > Severity¼No Injury 0.025 0.745 1.332 1457
9 Collision_Type¼ Left Turn - Angle > Lighting¼Daylight 0.025 0.786 1.322 1457
10 Collision_Type¼ Sideswipe - Same Direction > Lighting¼Daylight 0.026 0.778 1.308 1515
11 Collision_Type¼ Right Angle > Lighting¼Daylight 0.068 0.773 1.301 3964
12 Collision_Type¼ Left Turn - Opposite Direction > Lighting¼Daylight 0.017 0.76 1.278 991
13 Driver_Age ¼ 65–74 > Lighting¼Daylight 0.029 0.746 1.255 1690
14 Collision_Type¼ Left Turn - Angle > Alignment¼ Straight-Level 0.027 0.85 1.252 1574
15 Collision_Type¼ Right Angle > Alignment¼ Straight-Level 0.074 0.848 1.25 4313
16 Collision_Type¼ Rear End > Alignment¼ Straight-Level 0.165 0.847 1.249 9618
17 Collision_Type¼ Left Turn - Same Direction > Alignment¼ Straight-Level 0.011 0.846 1.247 641
18 Collision_Type¼ Left Turn - Opposite Direction > Alignment¼ Straight-Level 0.019 0.843 1.243 1107
19 Collision_Type¼ Sideswipe - Same Direction > Alignment¼ Straight-Level 0.028 0.837 1.234 1632
20 Lighting¼Dawn > Collision_Type¼ Single Vehicle 0.012 0.65 1.171 699
21 Driver_Age ¼ 75 plus > Alignment¼ Straight-Level 0.02 0.778 1.147 1166
22 Collision_Type¼ Sideswipe - Opposite Direction > Lighting¼Daylight 0.023 0.68 1.144 1341
23 Collision_Type¼ Sideswipe - Opposite Direction > Driver_Gender¼Male 0.025 0.732 1.137 1457
24 Collision_Type¼ Rear End > Day.of_Week¼Weekday 0.122 0.627 1.137 7111
25 Severity¼Moderate > Collision_Type¼ Single Vehicle 0.064 0.626 1.128 3730
26 Driver_Age ¼ 55–64 > Lighting¼Daylight 0.055 0.668 1.124 3206
27 Lighting¼Dark - Continuous Street Light > Alignment¼ Straight-Level 0.019 0.76 1.12 1107
28 Lighting¼Dark - Street Light At Intersection > Alignment¼ Straight-Level 0.013 0.753 1.109 758
29 Driver_Age ¼ 65–74 > Alignment¼ Straight-Level 0.029 0.747 1.101 1690
30 Day.of_Week¼Weekday > Lighting¼Daylight 0.355 0.643 1.081 20692
31 Collision_Type¼ Rear End > Severity¼No Injury 0.118 0.604 1.08 6878
32 Driver_Gender¼ Female > Lighting¼Daylight 0.228 0.64 1.077 13290
33 Collision_Type¼Head-On > Driver_Gender¼Male 0.013 0.692 1.075 758
34 Lighting¼Dark - No Street Lights > Driver_Gender¼Male 0.226 0.687 1.066 13173
35 Lighting¼Dark - Continuous Street Light > Driver_Gender¼Male 0.017 0.685 1.064 991
36 Lighting¼Dawn > Driver_Gender¼Male 0.012 0.682 1.059 699
37 Severity¼Moderate > Driver_Gender¼Male 0.069 0.677 1.052 4022
38 Severity¼No Injury > Alignment¼ Straight-Level 0.398 0.712 1.049 23199
39 Driver_Age ¼ 45–54 > Driver_Gender¼Male 0.094 0.674 1.047 5479
40 Severity¼ Complaint > Lighting¼Daylight 0.011 0.674 1.046 641
41 Lighting¼Dark - Street Light At Intersection > Driver_Gender¼Male 0.203 0.622 1.046 11832
42 Driver_Age ¼ 55–64 > Alignment¼ Straight-Level 0.058 0.709 1.045 3381
43 Driver_Age ¼ 55–64 > Driver_Gender¼Male 0.055 0.672 1.043 3206
44 Alignment¼On Grade-Straight > Lighting¼Daylight 0.021 0.618 1.04 1224
45 Collision_Type¼ Sideswipe - Same Direction > Driver_Gender¼Male 0.022 0.667 1.036 1282
46 Alignment¼ Curve-Level > Driver_Gender¼Male 0.134 0.661 1.027 7811
47 Day.of_Week¼Weekend > Driver_Gender¼Male 0.296 0.661 1.026 17253
48 Alignment¼On Grade-Curve > Driver_Gender¼Male 0.412 0.694 1.022 24015
49 Lighting¼Daylight > Alignment¼ Straight-Level 0.025 0.658 1.022 1457
50 Alignment¼ Straight-Level > Lighting¼Daylight 0.412 0.608 1.022 24015

12 S. DAS ET AL.
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lift values for different types of collisions are almost the same. Among these
rules, {Collision Type¼Rear End} ¼> {Alignment¼ Straight-level} dis-
plays a higher support value (0.165) with 9,618 frequency count. Middle
age (45–54) to older drivers (55 plus) are seen to be crash prone in daytime
rather than nighttime in rainy weather. Female drivers are seen in fewer
rules than the male drivers. Male drivers are associated with various vari-
able categories with higher lift value than the female drivers. Age and gen-
der are found significant during rainy weather in other studies (Ahmed &
Ghasemzadeh, 2018). One particular rule {Lighting¼Dark- No Street
Light} ¼> {Driver_Gender¼Male} shows a high support value of 0.203
with a frequency of 11,832 crashes.
Many interesting rules are observed in Table 4 for 3-itemsets rules.

Drivers with age group in between 15 and 44 appear frequently in the rules
generated for 3-itemsets. The first rule {Alignment¼On Grade-Curve,
Lighting¼Dark - No Street Lights} ¼> {Collision Type¼ Single Vehicle}
has the highest lift value. Curve-aligned roadways and roadways with poor
illumination are frequently visible in the antecedents of the rules. Another
study showed that crash severity in adverse weather conditions causing wet
pavement surface was more likely to increase at curves or ramps (Abdel-
Aty, Pemmanaboina, & Hsia, 2006). Young drivers associated with curve-
aligned roadways and poorly illuminated roadways result in single-vehicle
run-off crashes in rainy weather. The antecedents {Lighting¼Dark - No
Street Lights, Driver_Gender¼ Female} and {Lighting¼Dark - No Street
Lights, Driver_Gender¼Male} resulted in single-vehicle run-off crashes.
The rule associated with female driver has a higher lift value than the male
drivers, but the support value is higher in the rules for male drivers with a
frequency count of 10,712.
The rule {Alignment¼Curve-Level, Lighting¼Dark - No Street Lights,

Driver_Age ¼ 35-44} ¼> {Collision Type¼ Single Vehicle} has the highest
lift value. The next rule is associated with {Driver_Age ¼ 15-24} in place of
{Driver_Age ¼ 35-44}. The second rule has higher support value with fre-
quency of 1,626 than the first rule. Another interesting rule is
{Alignment¼Curve-Level, Lighting¼Dark - No Street Lights,
Driver_Gender¼ Female} ¼> {Collision Type¼ Single Vehicle}. The simi-
lar rule associated with male drivers has a lower lift value with higher sup-
port. These rules indicated that curve level and poorly illuminated
roadways are crash-prone areas during rainy weather driving. The age-
group vulnerable for the combination of these two characteristics is in
between 15 to 44. The consequent {Collision Type¼ Single Vehicle} is pre-
sent in all top 35 rules for 4-itemsets. In most cases, this consequent is
associated with these critical attributes: curve roadways, drivers in age
group 15–44, and roadways with no lighting at night. Weekend crashes
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have higher lift values than weekday crashes. Although out of 692 rules,
consequent {Alignment¼ Straight-level} is the most frequent (nearly 22%
in the rules).
In general, the rules presented above indicate the possible associations

for crashes in rainy weather. By analyzing the rules of 2-, 3-, and 4-

Figure 3. Matrix plot for the generated rules. (a) 2-itemsets; (b) 3-itemsets; (c) 4-itemsets.
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itemsets, few variable categories were discovered as the dominant factors
for rainy weather crashes. The factors should be carefully investigated by
the traffic agencies for considering appropriate countermeasures to avoid
crashes and crash severities in hazardous roadways.
An excellent visual representation of the results is also an integral part of

the data mining process. Visualization of the results of the association rules
is facilitated by the use of ‘arulesViz’ package (Hahsler & Chelluboina,
2018). Manual inspection of 1,890 rules is not a viable option. A straight-
forward visualization of association rules involves a scatter plot (Figure 2)
with two interest measures on the axes: the support values of the rules are
on the x axis and the lift values are on the y axis. The color of the points
(light gray to black) is used to indicate the confidence value of each rule.
The rules with lower support and lower lift values are higher in frequencies
than the rules of higher support and higher lift values.
Matrix-based visualization methods organize the antecedent and conse-

quent itemsets on the x and y axes, respectively. Selected interest measures
can be displayed at the joint of the antecedent and consequent for a given
rule. An antecedent/consequent combination with no rule keeps the joint
area blank. By considering the set of association rules

M ¼ a1; c1; q1ð Þ; . . . ai; ci; qið Þ; . . . an; cn; qnð Þ� �

Where, ai is the antecedent, ci is the consequent, and qi is the selected
interest measure forthe ith rule for i¼ 1,… , n.
Suppose in the visualization matrix M, the set of K unique antecedents

and L unique consequents are identified. A ‘L� K’ matrix M with one col-
umn for each unique antecedent and one row for each unique consequent
was also done. Finally, the matrix was populated by setting Mik¼ mi for
i¼ 1, … , n and l and k corresponding to the position of ai and ci in the
matrix. M also contains blank cells because many potential association rules
will not meet the minimum thresholds for support and confidence. The
matrix-based visual plots are illustrated in Figure 3. The number of rows/
columns (x and y axis) depends on the number of unique features or
attributes in the consequent/antecedent in the set of rules. This figure gives
a general idea of how the consequents are varied based on the lift and con-
fidence value with respect to the antecedents. Figure 3 indicates that num-
ber of unique features increase with the increase of the itemsets.
Figure 4 reveals the easier visualization of large sets of association rules

from the grouped matrix. Balloon plots are drawn with antecedent groups
as columns and consequents as rows (for 2-, 3-, and 4-itemsets). The color
of the balloons (light gray to black) represents the lift value and the size of
the balloon shows the aggregated support. The number of antecedents and
the most important (frequent) items in the group are displayed as the labels
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for the columns. The association rules reveal certain critical safety attrib-
utes: single vehicle, daylight, straight-aligned roadways, and male drivers.
The study shows that the application of association rules mining in a

specific environmental condition can help to reveal how drivers’ behavior,

Figure 4. Grouped matrix plot for the generated rules.
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roadway conditions, and crash temporal characteristics are associated with
different collision types and injury severity. These findings are expected to
be useful for policy makers to develop better safety policies.

5. Conclusion

The major objective of this study is to develop an efficient way of deter-
mining key significant rules that contribute to rainy condition crashes. This
article demonstrated that association rules mining technique is one the suit-
able approach to extract knowledge from the traffic crash data under rainy
condition. Some interesting findings are observed for crashes in rainy wea-
ther. Some of the findings verify the general perceptions on such types of
crashes, and a few findings are quite surprising. The most significant single
variable category for the situation is associated with single-vehicle ROR
crashes. This crash type is highly associated with the presence of other
roadway features such as on grade-curve aligned roadways, curved road-
ways, and roadways with no streetlights at night. During rainy weather,
Property Damage Only and sideswipe (same direction) crashes shows high
likelihood of occurrence. For drivers age 55 and older, most of the crashes
during rainy weather are associated with daytime. It can be associated with
the facts that older drivers usually avoid driving at night during rainy wea-
ther. Moderate injuries show high likelihood in single-vehicle ROR crashes,
which is also common in ROR crashes due to other reasons. Roadways
with poor illumination are associated with straight-level aligned roadways
for many rainy weather crashes. Drivers (age group in between 15 to 44)
seem to be associated with poor illumination and roadway curves during
rainy weather crashes. The findings this study are supported by other study
findings. The results provide quantitative support the significant factors
associated with rainfall crashes.
This study has several limitations. The current study has not developed

an optimization criterion to determine the optimized support and confi-
dence thresholds. Future studies can consider using ant colony optimiza-
tion or genetic algorithm to determine the optimized values. Another
limitation is the use of limited number of variables. Future studies can con-
sider using a larger number of variables to generate more rigorous and
latent patterns. Additionally, the results would be more intuitive if there is
a comparison between dry weather crashes, which is currently not per-
formed in this study.
By observing the potential patterns in the discovered rules, the results

can provide valuable insights into the underlying relationships between risk
factors and crashes under particular conditions. Policy makers and safety
professionals can use the findings from this study to conduct decision
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making on the appropriate countermeasures. It is important to adopt wea-
ther specific countermeasures (e.g., advisory weather signals or signs, high
visible pavement markings in low visibility condition) to minimize the
number of crashes occurred during rainy condition. The efforts of highway
department to provide safety during rainy condition would be more pro-
ductive from the findings of the current study.
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